

Development of a lyophilized peptide drug product and assessment of alternative freeze drying methods

Stefan Schneid

Lyo Garmisch Conference September 16 – 19, 2025

Bayer in Wuppertal

DESTINA

Wuppertal, Germany

The Schwebebahn railway in Wuppertal is one of the world's coolest rail systems.

Ina Fassbender/AFP/Getty Images

An industrial city in western Germany may not sound like anyone's idea of a dream vacation, but Wuppertal has an extraordinary ace up its sleeve -- one of the world's coolest rail systems.

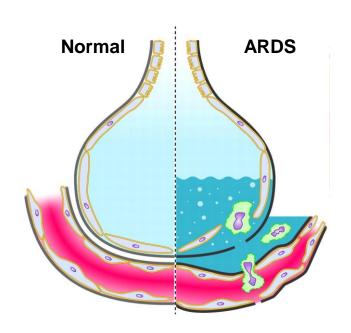
Newly repaired in 2019 after a six-month closure, the city's 120-year-old <u>Schwebebahn</u> <u>suspension railway l</u>ooks like something from the imagination of Jules Verne.

It's a steampunk vision of a mass transit system whose iron legs straddle the city's streets and waterways, whisking passengers high over traffic snarl-ups to stations just as sci-fi as the train that connects them.

It costs just a few dollars to ride the Schwebebahn, alongside the thousands of commuters that use it daily.

Agenda

Introduction and API


Formulation Development

Process Transfer

Continuous Freeze Drying

Adrenomedullin pegol: Proposed Mechanism in ARDS

Vascular leakage

alveolar edema, impaired lung function, reduced oxygenation

Invasive mechanical ventilation

High mortality (30-40 %)

Central MoA of BAY 1097761 might be beneficial as treatment option in ARDS

restore cell-cell junctions
reduce lung water
improve oxygenation
decrease mortality and need for
mechanical ventilation

Negative efficacy data from Phase 2A study - project was terminated

Bayer pulls plug on respiratory drug PEG-ADM

Adrenomedullin pegol

Some facts

Molar mass 46.3 kDa

85% of the mass is PEG

56 chiral centers, 54 amino acids

Intramolecular disulfide bond

10 g PEG-ADM (Prodrug)

= **1.3 g** ADM content

Adrenomedullin (ADM) is released upon pH increase

Drug Product and Device

Phase I

Drug Product: frozen solution in buffered saline, ADM conc. 0.48 mg/mL in application solution

Device: Aerogen Solo nebulizer with Ultra[™] mouthpiece (self-breathing volunteers)

Phase II

Drug Product: lyophilisate formulation with matching placebo, ADM conc. 0.48 mg/mL in application solution

Device: Aerogen Solo nebulizer with T-piece (ventilation setup)

Regulatory requirements for synthetic peptide drugs

- Biologic Price Competition and Innovation Act (BPCIA) amended the definition of a biologic product to include "proteins (except any chemically synthesized polypeptide)"
 - Chemically synthesized polypeptides = made entirely by chemical synthesis and greater than 40 but less than 100 amino acids in size

- Further Consolidated Appropriations Act (FCAA) further amended the definition of a biologic product by removing the phrase "(except any chemically synthesized polypeptide)"
 - Final Definition of a protein effective 2020-March-23:

<u>Protein:</u> any alpha amino acid polymer with a specific defined sequence that is greater than 40 amino acids in size, including any **chemically synthesized polypeptide**

Adrenomedullin pegol is considered a BIOLOGIC in the US, but a SMOL in all other countries

Agenda

Introduction and API

Formulation Development

Process Transfer

Continuous Freeze Drying

Formulation Development

Previous product versions:

- Mannitol-based lyo formulation for infusion
- Buffered saline frozen solution for inhalation

Planned new product version:

- Stable lyophilizate for inhalation
- Suitable for nebulization
- Additional item: evaluation of lyophilized DS

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2023/0149553 A1 UNGER et al. (43) Pub. Date:

May 18, 2023

(54) LIQUID PHARMACEUTICAL FORMULATIONS POLYETHYLENE GLYCOL-BASED PRODRUGS OF ADRENOMEDULLIN AND USE

(71) Applicant: Bayer Aktiengesellschaft, Leverkusen

(72) Inventors: Florian UNGER, Haan (DE); Stefan Christian SCHNEID, Düsseldorf (DE): Hans-Walter MOTZKUS, Schildow (DE); Carina HAASBACH, Wuppertal

(73) Assignee: Bayer Aktiengesellschaft, Leverkusen

17/916,778 Mar. 31, 2021

PCT/EP2021/058427 (86) PCT No.: § 371 (c)(1),

(2) Date: Oct. 3, 2022 Foreign Application Priority Data

Apr. 3, 2020 (EP)

Publication Classification

(51) Int. Cl. A61K 47/60 (2006.01) A61K 9/08 (2006.01)A61K 47/54 (2006.01)A61K 9/00 (2006.01)(52)

U.S. Cl. A61K 47/60 (2017.08); A61K 9/08 (2013.01); A61K 47/542 (2017.08); A61K 9/0073 (2013.01)

The present invention relates to novel liquid pharmaceutical formulations, preferably for inhalation, comprising polyethylene glycol (PEG)-based prodrugs of Adrenomedullin (PEG-ADM) and the use thereof for the treatment and/or prevention of acute lung injury/acute respiratory distress syndrome (ALI/ARDS).

Specification includes a Sequence Listing.

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2023/0364245 A1 UNGER et al. (43) **Pub. Date:**

PHARMACEUTICAL FORMULATIONS POLYETHYLENE GLYCOL-BASED PRODRUGS OF ADRENOMEDULLIN AND

(71) Applicant: Bayer Aktiengesellschaft, Leverkusen (DE)

(72) Inventors: Florian UNGER, Haan (DE); Stefan Christian SCHNEID, Duesseldorf (DE): Hans-Walter MOTZKUS, Schildow (DE); Carina HAASBACH, Wuppertal (DE)

(21) Appl. No.: 17/905,747

(22) PCT Filed: Mar. 31, 2021

(86) PCT No.: PCT/EP2021/058428 § 371 (c)(1), (2) Date: Sep. 6, 2022

Foreign Application Priority Data . 20168075.8 Apr. 3, 2020 (EP) ...

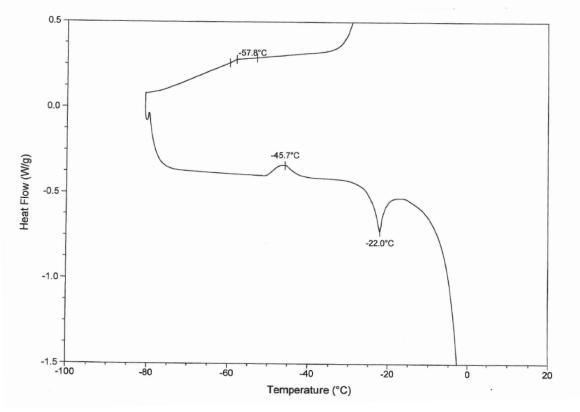
Nov. 16, 2023

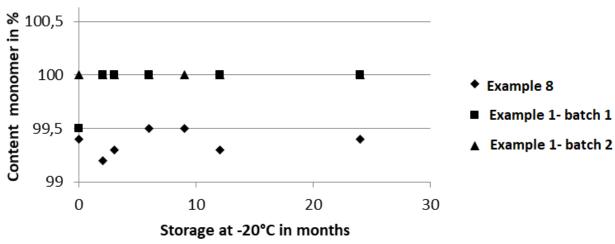
Publication Classification

(51) Int. Cl. A61K 47/60 (2006.01)A61K 47/26 (2006.01) A61K 9/00 (2006.01)

(52) U.S. Cl. A61K 47/60 (2017.08); A61K 9/0078 (2013.01); A61K 47/26 (2013.01)

ABSTRACT


The present invention relates to novel pharmaceutical formulations, preferably for inhalation, comprising polyethylene glycol (PEG)-based prodrugs of Adrenomedullin (PEG-ADM) and the use thereof for the treatment and/or prevention of acute lung injury/acute respiratory distress syndrome (ALI/ARDS).


Specification includes a Sequence Listing.

Frozen Solution

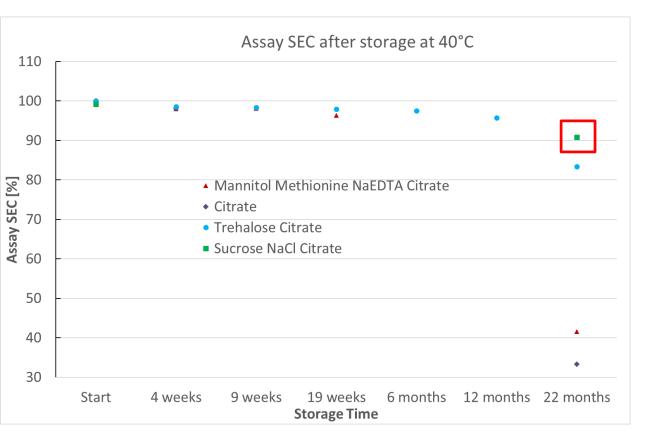
- Citrate buffered solution at pH 4 containing NaCl
- Very low T_g' value of -58°C, and eutectic melting at -22°C
- However, the product was perfectly stable when stored at < -15°C (effectively -20 +/- 5°C)
- Stability was also confirmed after freeze-thaw cycling with 5 consecutive freezing and thawing steps
- Incomplete freezing in this case not detrimental for product quality and stability

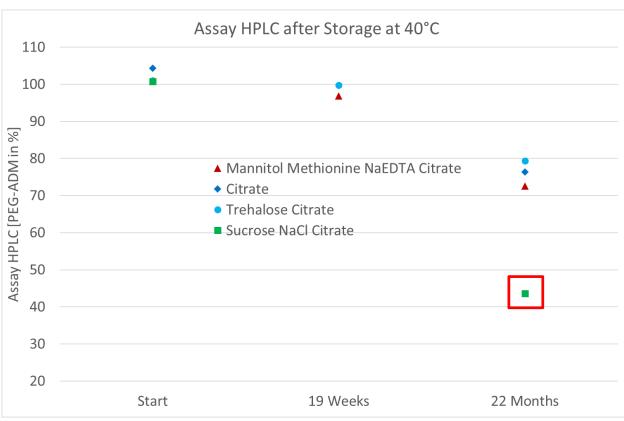
Lyophilisate Development

Objective for new product version:

- Stable lyophilisate suitable for inhalation application
- Low pH of 4 required due to prodrug properties, limited buffer options
- Some NaCl needed in the final application solution to avoid cough reflex
- Compatible with nebulization using commercial nebulizer, several nebulizations per device (3 treatments per day)
- Avoid development of separate reconstitution solution

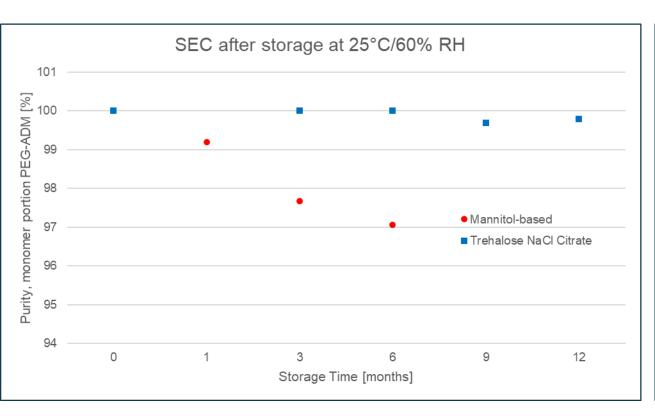
Formulation Screening:

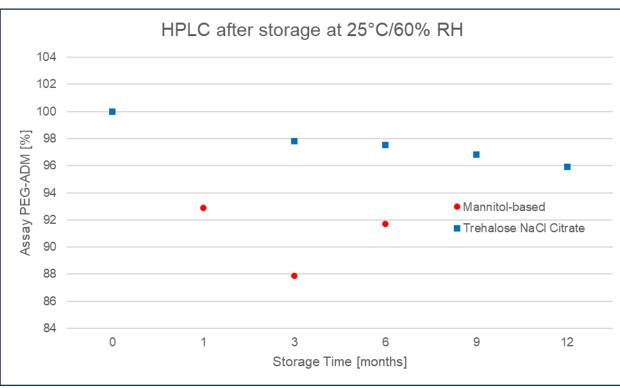

- Citrate selected as buffer system
- Screening of cryo- and lyostabilizers, surfactants, antioxidants, chelating agents



- Stress testing in liquid and lyo state
- Addition of surfactant was found to be not required based on mechanical stress data
- Low T_g' of formulations (due to NaCl) needed to be increased to manageable level for freeze drying
- But: high concentrations of cryo-/lyostabilizer and increased viscosity impaired nebulization properties (reduced throughput, increase of droplet size)

Orienting Stability with Preliminary Lyo Formulations




Partially contradicting results for different analytical methods were caused by formation of sucrose degradation products after extended storage at pH 4 which impacted the UV detection

Overall, a trehalose-based formulation showed the best stability and was selected

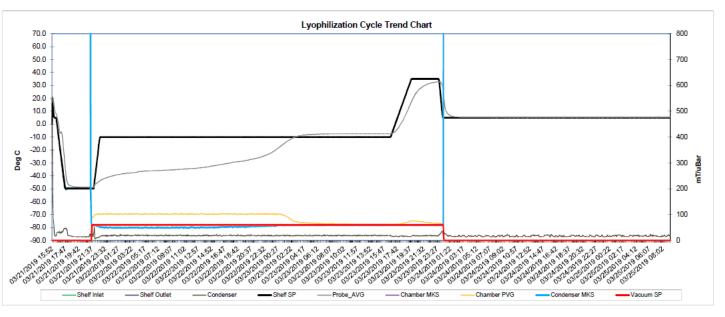
IND-enabling Stability Studies for Lyo Formulations (further iteration)

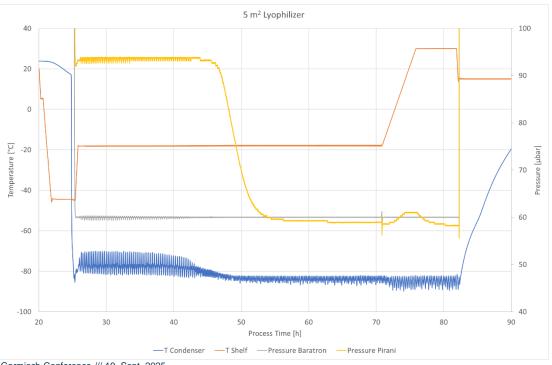
Comparison of the IMPD stability studies for the old Mannitol-based i.v. formulation and the Trehalose-based inhalation formulation confirm superior stability of the new product version

Agenda

Introduction and API

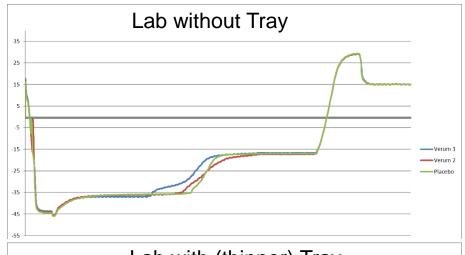
Formulation Development

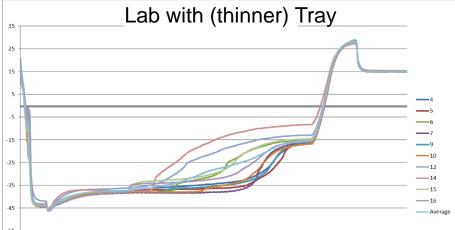

Process Transfer

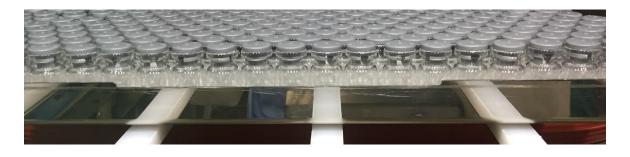

Continuous Freeze Drying

Lyo Process Transfer

- Process Development performed in lab freeze dryer
- Characterization of collapse temperature and T_g' for active and placebo (~ -35°C and -37°C)
- → Lower shelf temperature used for placebo than for active process to ensure comparable appearance
- Successful transfer to Bayer-internal clinical supply line with two freeze dryers (~ 5 m² each)
- Subsequently, temporary transfer to clinical CDMO required due to internal shutdown, with different lyo and configuration (vials on trays)

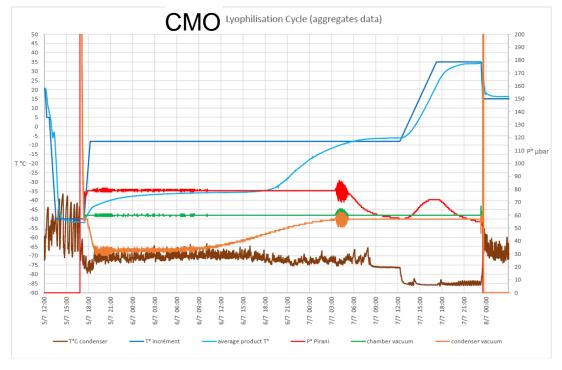





Process Adaptations to compensate for Trays

Tests performed at Bayer => impact on Tp, Drying duration and RM

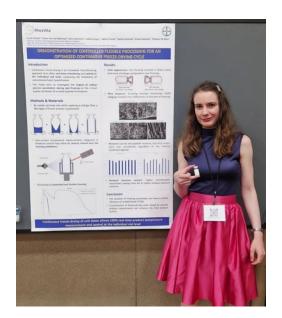
+ use of OQ data from CMO on Iyo performance



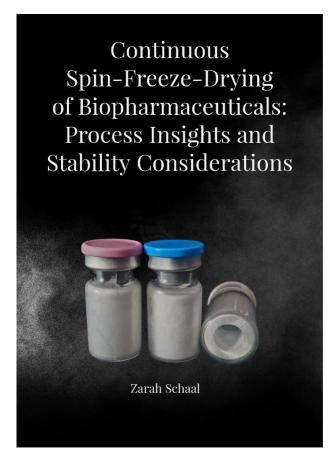
Freeze drying recipe adapted

Agenda

Introduction and API


Formulation Development

Process Transfer


Continuous Freeze Drying

Ph.D. Collaboration with Rheavita, Ghent

Zarah Schaal Pharmacist, Ph.D. Candidate Ghent

Z. Schaal, P.J. van Bockstal, J. Lammens, J. Lenger, A. Funke, S. Schneid, H. Svilenov, T. De Beer. Continuous spin-freeze-drying of a PEGylated peptide formulation: evaluating the role and impact of annealing and radiative cooling. Submitted to AAPS Open

European Journal of Pharmaceutical Sciences 204 (2025) 106963

Contents lists available at ScienceDirect

European Journal of Pharmaceutical Sciences

journal homepage: www.elsevier.com/locate/ejps

Optimization of continuous spin-freeze-drying: The role of spin-freezing on quality attributes and drying efficiency of a model peptide formulation

Zarah Schaal ^{a,b}, Pieter-Jan Van Bockstal ^a, Joris Lammens ^a, Julian H. Lenger ^c, Adrian P. Funke ^d, Stefan C. Schneid ^c, Hristo L. Svilenov ^{e,1}, Thomas De Beer ^{a,b,*}

International Journal of Pharmaceutics 683 (2025) 126007

Contents lists available at ScienceDirect

International Journal of Pharmaceutics

journal homepage: www.elsevier.com/locate/ijpharm

Impact of spin-freezing parameters and excipient composition on product stability of a PEGylated peptide formulation

Zarah Schaal ^{a,b}, Pieter-Jan Van Bockstal ^a, Joris Lammens ^a, Julian H. Lenger ^{c,1}, Adrian P. Funke ^d, Stefan C. Schneid ^c, Thomas De Beer ^{a,b,*}

Continuous Freeze Drying – Rheavita Technology

Scale-Up and Transfer

SVU

R&D equipment including software & digital twin for fast product & process development with very low product consumption

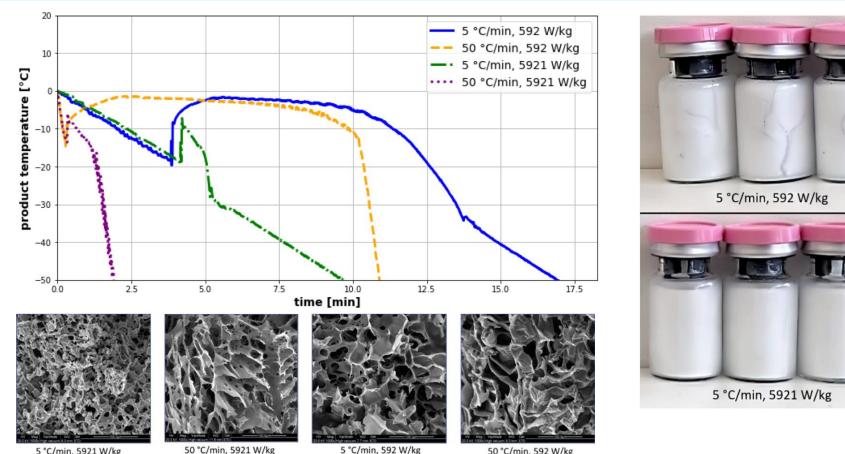
MVU

Available for evaluation studies by pharmaceutical companies for stability analysis and formulation optimization

RheaVita - 2022 Confidential - all rights reserved

GMP-FLEX

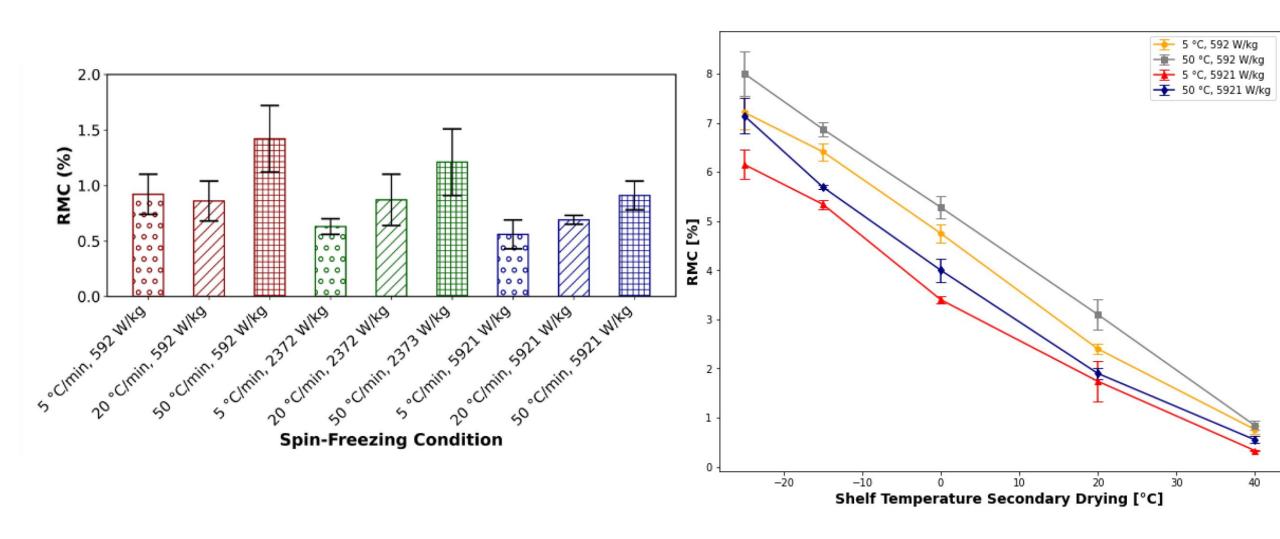
GMP production scale continuous freeze-dryer - custom made assembly



Spin-Freezing Conditions influence Cake Appearance

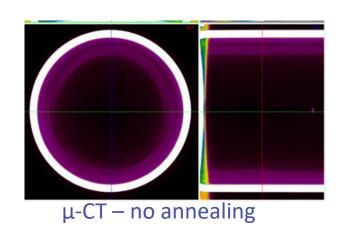
Variation of Cooling Rate and Crystallization Rate resulted in changes in product appearance and cake morphology; fast crystallization rate beneficial for avoidance of cracking

Most product cQAs (assay, purity, reconstitution time) and drying time were not impacted. RM → next slide

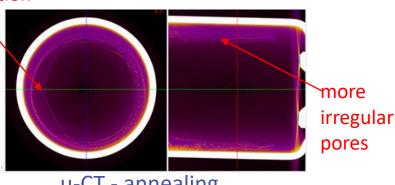


/// Development of a Lyophilized Peptide DP and Assessment of alternative Freeze Drying Methods /// Stefan Schneid /// Lyo Garmisch Conference /// 19. Sept. 2025

Spin-Freezing Conditions impacted Residual Moisture Content



Annealing resulted in unexpected results


- Annealing: skin formation, collapsed/heterogeneous cakes, and increased product resistance
 → unsuitable for this formulation and integration appears impractical for this technology
- Peptide Stability: unaffected by annealing after the drying process (no stability data)

Left to right: unannealed formulation, unannealed placebo, annealed formulation, and annealed placebo

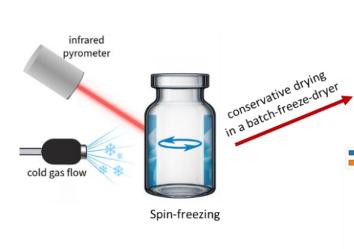
skin formation

Reformulation Stability Study

Research Objective:

Do spin-freezing conditions affect the long-term stability of the PEGylated peptide formulation?

How does replacing trehalose with alternative excipients influence stability?


 \rightarrow Four different spin-freezing & two different storage conditions (50 °C & 2 – 8 °C) examined

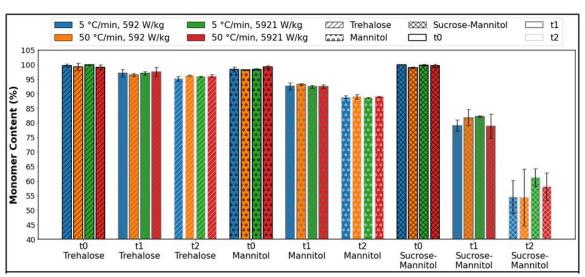
Trehalose-based: 3.7 mg/mL API, 7.5 mg/mL citrate, 1.7 mg/mL NaCl, 50 mg/mL Trehalose

Mannitol-based: 3.7 mg/mL API, 7.5 mg/mL citrate, 1.7 mg/mL NaCl, 50 mg/mL Mannitol

Sucrose/Mannitol-based:

3.7 mg/mL API, 7,5 mg/mL citrate, 1.7 mg/mL NaCl, 37.5 mg/mL Sucrose, 12.5 mg/mL Mannitol

Sucrose-


Trehalose Trehalose Trehalose Mannitol Mannitol Mannitol

After 13-week storage at 50 °C

Reformulation Stability Study

- Trehalose: again most stable formulation, high peptide concentration and low aggregation even at 50 °C
- Mannitol: moderate degradation at 50 °C, no assay interference
- Sucrose–mannitol (75:25): collapse \rightarrow sugar hydrolysis/Maillard \rightarrow UV-interference, high aggregation
- **Spin-freezing parameters:** stability mainly affected by excipients & storage, not freezing parameters

A) trehalose, B) mannitol, and C) sucrose-mannitol samples after 13 weeks at 50 °C

Thank you! Questions?

Acknowledgements

Zarah Schaal

Thomas de Beer

Pieter-Jan van Bockstal

Adrian Funke

//////////

Julian Lenger

Stefan Heke

Stephanie Schiefer

Carina Haasbach

Sebastian Peuker

Bassel Sabbagh

